Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities
نویسندگان
چکیده
منابع مشابه
Electric load forecasting using wavelet transform and extreme learning machine
This paper proposes a novel method for load forecast, which integrates wavelet transform and extreme learning machine. In order to capture more internal features, wavelet transform is used to decompose the load series into a set of subcomponents, which are more predictable. Then all the components are separately processed by extreme learning machine. Numerical testing shows that the proposed me...
متن کاملForecasting Monthly Electric Energy Consumption Using Feature Extraction
Monthly forecasting of electric energy consumption is important for planning the generation and distribution of power utilities. However, the features of this time series are so complex that directly modeling is difficult. Three kinds of relatively simple series can be derived when a discrete wavelet transform is used to extract the raw features, namely, the rising trend, periodic waves, and st...
متن کاملSmart Grid Load Forecasting
Electrical load modeling and forecasting are critically important in the electrical network and smart grid. The sparse Bayesian Learning (SBL) algorithm can be utilized to model and forecast the electrical load behavior. The SBL algorithm can solve a sparse weight vector with respect to a kernel matrix for modeling electricity consumption. However, traditional SBL can only handle an electricity...
متن کاملElectricity Load Forecasting Using Machine Learning Techniques
Electricity load forecasting has become increasingly important due to the strong impact on the operational efficiency of the power system. However, the accurate load prediction remains a challenging task due to several issues such as the nonlinear character of the time series or the seasonal patterns it exhibits. A large variety of techniques have been proposed to this aim, such as statistical ...
متن کاملElectricity Load Forecasting Using Machine Learning Techniques
Electricity load forecasting has become increasingly important due to the strong impact on the operational efficiency of the power system. However, the accurate load prediction remains a challenging task due to several issues such as the nonlinear character of the time series or the seasonal patterns it exhibits. A large variety of techniques have been proposed to this aim, such as statistical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2020
ISSN: 2071-1050
DOI: 10.3390/su12166364